EASTERN REGIONAL RESEARCH CENTER
AGRICULTURAL RESEARCH SERVICE
UNITED STATES DEPARTMENT OF AGRICULTURE
600 E. MERMAID LANE
WYNDMOOR, PA 19038
(215) 233-6400

Title: Numerical Analysis of the Growth of Clostridium Perfringens in Cooked Beef
Under Isothermal and Dynamic Conditions

Author(s): L. Huang

Citation: Journal of Food Safety (2004) 24: 53-70

Number: 7378

Please Note:
This article was written and prepared by U.S. Government employees on official time, and
is therefore in the public domain.

Our on-line publications are scanned and captured using Adobe Acrobat. During the
capture process some errors may occur. Please contact William Damert, wdamert@arserrc.gov
if you notice any errors in this publication.



mailto:wdamert@arserrc.gov

NUMERICAL ANALYSIS OF THE GROWTH OF
CLOSTRIDIUM PERFRINGENS IN COOKED BEEF
UNDER ISOTHERMAL AND DYNAMIC CONDITIONS!

LIHAN HUANG?

Food Safety Intervention Technologies Research Unit
Eastern Regional Research Center
USDA Agricultural Research Service
600 E. Mermaid Lane

Wyndmoor, PA 19038
Accepted for Publication Jamuary 7, 2004

ABSTRACT

The main objective of this study was to develop a numerical technique to
solve a set of biologically-based differential equations used to describe the
growth behaviors of bacteria under isothermal conditions in food systems. A 4th-
order Runge-Kutta method was incorporated to a computer program 1o solve
these equations covering the entire range of bacterial growth, including lag,
exponential, and stationary phases. The differential growth models were tested
using the spores of Clostridium perfringens inoculated to ground beef and
incubated under various isothermal conditions between 17-50C. Results of
numerical analysis showed that the differential equations could accurately
describe the growth of C. perfringens in cooked ground beef under isothermal
conditions. ~

The differential equations were also used to estimate the growth of C.
perfringens in cooked ground beef under four different dynamic temperature
profiles: 2-square waves, exponential and linear cooling. In combination with
a secondary kinetic model, the growth of C. perfringens in cooked ground beef
under dynamic conditions was accurately estimated. Results showed the
differences between the estimated and experimentally observed growth curves
under dynamic conditions were generally less than 0.5 log (CFU/g). The
methodology developed in this study can be a new approach for the food
industry, food retailers and consumers, and regulatory agencies to predict and

' Mention of & brand or firm name does not constitute an endorsement by the U.S. Department of
Agriculture over others of a similar nature not mentioned.

2 Corresponding author. USDA-ARS-ERRC, 600 East Mermaid Lane, Wyndmoor, PA 19038, TEL:
(215) 233-6552; FAX: (215) 233-6406; EMAIL: Thuang@errc.ars.usda.gov
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estimate the bacterial growth in cooked meat products under dynamic tempera-
ture abuse and deviation conditions. |

INTRODUCTION

Growth of microorganisms in food systems is usually categorized into three
different phases — lag, exponential, and stationary. Over the last few decades
various mathematical models have been used to describe the sigmoidal trend of
bacterial population growth under isothermal conditions. These models include
Gompertz, logistic, and Baranyi models (Gibson ef al. 1987, Baranyi er al.
1993a, b; McClure & al. 1994). Among these models commonly used in
predictive microbiology, the Baranyi model was originally derived from the
Michaelis-Menten and logistic kinetics, and therefore was considered more
biologically-based than the modified Gompertz and logistic models. Each of
these models is unique in its characteristics. The exponential phase described of
a growth curve by the Baranyi model is more linear than the Gompertz and
logistic models. The difference between the modified Gompertz and logistic
models is in the symmetry with respect 1o the inflexion point (M), which is a
point where the concavity of a curve changes. The logistic growth curves are
symmetric with respect to the inflexion points (M), while the Gompertz curves
are not. Although all these models have been widely used to describe the
isothermal bacterial growth in food systems, obtaining them require applications
of various nonlinear regression methods and highly sophisticated statistical
software for curve fitting. The basic process of obtaining a growth model is (1)
searching for a sigmoidal mathematical model, such as the Gompertz or logistic
model; (2) modifying the model, usually accomplished by converting the
independent valuable into the logarithm of bacterial counts; (3) using a statistical
method, mostly nonlinear regression, to fit the data and obtain relevant
parameters of the model. The traditional process is very convenient for obtaining
a model, but such model usually lacks biological meaning, and it is necessary
to rely on re-parameterization of the mode] to derive and define the biological
meanings.

Juneja et al. (2001), Juneja and Marks (2002), and Juneja et al, (2003)
proposed a new approach to describe the bacterial growth under isothermal
conditions. This approach utilized a set of two differential equations to describe
the population growth of pathogens in food systems:

dc, | R

R7378-02



NUMERICAL ANALYSIS OF MICROBIAL GROWTH

dC,  dC, Cp 1))
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In Eq. (1) and (2), C, is the concentration of dormant bacterial cells, C,
is the concentration of actively dividing cells, C,,, is the maximum cell
concentration that bacteria can grow in the food system, k; is the rate at which
bacteria leave the state of dormancy (or lag), and k;, is the rate at which bacteria
actively divide. Different from most empirical models (such as the modified
Gompertz and logistic models) where the logarithm of bacterial counts or
concentration is used, the unit for cell concentration in Eq. (1) - (2) is the
original bacterial count, i.e., CFU per unit mass or volume.

The basic hypothesis for this model is that not all the initially inoculated
cells/spores leave the lag phase at the same time. Instead, the process follows
the 1st-order kinetics and is described in the first differential equation (Eq. 1).
At time 2zero, all cells are presumed in the lag phase, and the cell concentration
(CD is equal to the initial inoculum level. As soon as the bacterial cells exit the
lag, they immediately begin to divide. The second differential equation (Eq. 2)
governs the rate of bacterial division after the cells leave the lag phase. The
initial condition for Eq. (2) is C, = 0 at t = 0, i.e., there are no actively
dividing cells at the time of inoculation. Combining Eq. (1) and (2), the
mathematical equation describing the process of microbial division can be further
written as

dc c
-&-‘E = £,C,+ k,Cp ( —E;ﬁ-) &)

At any given moment, the total cell concentration (C) is the sum of the
dormant and actively dividing cell concentrations:

C=C, +Cp 4)

An analytical solution to Eq. (1) - (4) for a complete isothermal growth
curve may not exist or is difficult to find. Therefore Juncja ef al. (2001) and
Juneja and Marks (2002) developed a partial solution to these equations by
excluding the stationary phase from the growth curves. As a result, only partial -
growth curves were used to obtain the exponential growth rates and the lag
phases in both studies conducted by Juneha ef al. (2001) and Juneja and Marks
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(2002). The authors still relied on nonlinear regression to obtain the growth
parameters for the differential growth equations. This study represents a
continuation of the previous effort and developed a methodology to solve the
partial differential equations and use them to describe the entire bacterial growth
process, covering from lag to stationary phases.

The growth models developed under isothermal conditions cannot be used
directly for estimating bacterial growth under nonisothermal conditions.
However, an important goal of predictive microbiology is to estimate the growth
of pathogens in foods under dynamic temperature conditions. Several mathemati-
cal methods have been established to achieve this goal. These methods are
primarily based on the modified Gompertz modei (Van Impe et al. 1992, 1995;
Huang 2003) and the Baranyi model (Baranyi and Roberts 1994; Bovill e al.
2000, 2001). From the data available in published literature, the method based
on the modified Gompertz model seems more accurate than the one based on the
Baranyi model in the dynamic analysis of bacterial growth.

The primary objective of this study was to develop a new approach using
numerical techniques to solve the differential growth equations (Eq. 1-2) and use
them to describe the eatire bacterial growth curves under isothermal conditions.
This research also aimed to apply numerical methods and the differential
equations to ecstimate the bacterial growth under dypamically changing
temperature conditions.

MATERIALS AND METHODS

Test Organisms and Sample Inoculation

Three different strains of C. perfringens, NCTC 8238 (Hobbs serotype 2),
NCTC 8239 (Hobbs serotype 3), and ATCC 10388 (Hobbs serotype 13) were
selected in this study to develop growth data completed with lag, exponential,
and stationary phases. Spore crops of these strains were grown and harvested
using procedures developed by Juneja er al. (1993). Each spore crop was
washed twice, resuspended in sterile distilled water, and maintained at = 4C
until use.

Ground beef (93% lean), purchased from a local grocery store, was
sterilized by ionizing <y-irradiation to a dose of 42 KGy at -30C using a Cs'¥
source (Thayer er al. 1995). Three strains of bacterial spores with the same
optical density were mixed to form a 10 mL cocktail and then inoculated to
approximately 1500 g of ground beef. The bacteria and ground beef mixture was
mixed twice (30 min each) in a Kitchen-Aid mixer (Model Max Watts 325) and
a homogeneous distribution of spores was experimentally confirmed after the
mixing. The final concentration of C. perfringens spores in ground beef was
approximately 100 spores per gram of meat. -
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Inoculated ground beef was divided into 5 + 0.02 g portions and packaged
into plastic filter bags (12 x 19 cm, Model BagPage® BP 100, Topac Inc.,
Hingham, MA) and sealed at the vacuum of 15 mmHg. Samples were kept
frozen (-20C) until used in the experiment.

[sothermal Bacterial Growth

Inoculated frozen beef samples were thawed overnight in a refrigerator (=
4C). Samples in the plastic filter bags were first heat-shocked at 75C for 20 min
lo activate the spores and to inactivate any contaminating vegetative celis. The
heat-shocked samples were briefly rinsed with rusning water (=20C for 1-2
min) and placed into incubators maintained at 17, 25, 30, 36, 45, 47, and 50C,
respectively. Samples from each incubation temperature were periodically
removed from the incubators for determination of bacterial cell concentrations.
Under isothermal conditions, C. perfringens spores could outgrow, germinate,
and multiply. The incubation continued until a full growth curve, containing the
lag, exponential, and stationary phases, could be developed. Experiments were
conducted at least in triplicate to obtain the growth data under each isothermal
temperature condition.

Dynamic Bacterial Growth

To test the applicability of the differential growth models in estimating the
bacterial growth under dynamic temperature conditions, inoculated samples were
incubated under fluctuating temperature profiles. Samples were alternated
between two incubators held under two different temperature conditions. At each
exchange between the incubators, samples were taken and tested for bacterial
counts. Two separate square-waved temperatures (30-45C and 45-36C) and were
used.

Samples were also incubated under exponential and linear cooling
conditions. Two continuously varying temperature profiles were arbitrarily
chosen to test the methodology developed in this study. For both exponential and
linear cooling temperature profiles, samples were placed in a circulating water
bath (Model ESRB-7, Techne Inc., Princeton, NJ). For the exponential cooling
tests, the water bath temperature was automatically controlled to change
exponentially from 51C to 10C in 18 h. This temperature profile simulated a
cooling condition with an internal temperature changing from 51C w0 10C in
18 h under an ambient temperature of 0C. For the linear cooling tests, the
water bath temperature was initially set at S1C and then changed at the rate of
0.1C/min. For both linear and exponential cooling tests, samples of the first
6 h were taken for analysis. The exponential cooling study was conducted in
duplicate, while the linear cooling study in triplicate. Both cooling profiles were
designed to test the adequacy of the differential equations and the numerical
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method for estimating the bacterial growth under dynamic temperature
conditions.

Bacterial Counts

Samples removed from incubators were immediately diluted with equal
volumes (5 mL) of 0.1% sterile peptone water. A rubber hammer was used to
gently break and tenderize the meat samples in the plastic bags. The samples
were then mixed in a MiniMix Stomacher (Model BagMixer® 100 W,
Interscience Co., France) at the maximum speed for 12 min to completely
homogenize the meat. After homogenization, a small volume (0.1-0.5 mL) of
the liquid fraction was serially diluted with 0.1% stetile peptone-water and
plated on Shahidi-Ferguson Perfringens (SFP) agar. After spread plating, cach
SFP agar plate was overlaid with approximately 10 mL of freshly prepared SFP
agar. Upon solidification of SFP agar overlay, the plates were placed in an
anaerobic chamber (Model Bactron IV, Sheldon Manufacturing Inc., Comnelius,
OR) and incubated at 37C for 2448 h under an atmosphere of CO,/N,/H,
(10%:85%:5%). Typical perfringens colonies were counted and recorded.

Numerical Analysis of Differential Equations

For a set of known experimental growth data obtained under an isothermal
condition, the task of numerical analysis was to determine suitable values of k;
and k,, for Eq. (1)<(4). To simplify the calculation process, it is hypothesized
that there exits an optimal value @ such that k; is a linear function of ky, or

k, = ak, (5)

A numerical iteration algorithm was designed to search for the most suitable
values of o and k,, for a set of experimental growth data. The least-squares
method was used to determine the search criteria. The iteration started with an
initial “guess™ of & and k;,. After each iteration with “guessed” values of a and
ky, the computer program generated a growth curve. The computer-generated
growth curve was then compared with the experimental growth data to calculate
the sum of error squares (SES) using Eq. (6). In this equation, Cf is the
experimentally determined cell concentration at time t;, C® is the computer-
generated cell concentration at the corresponding time point, N is. the total
number of data points in the experimental set.
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N
SES = ¥ (€f-CP ©)
=

The numerical iteration to search for a and k;, would continue until a
minimum value of SES for the input experimental growth data was found,
indicating that the growth parameters for Eq. (1) and (2) best matching the
actual growth data had been successfully obtained.

The 4th-order Runge-Kutta method (Chandra and Singh 1995) was used in
the numerical iterations to solve the differential equations. A computer program
was developed using Microsoft Visual Basic V6.0. This computer program
required a set of actual growth data, including the initial and final concentra-
tions. The original cell counts (CFU/g) were directly used in the computer
program. After numerical analysis, a growth curve (described by the differential
equations) that best fitted the experimental data was generated.

After the numerical iteration was completed, a pscudo-R? value was
calculated using Eq. (7). Since the least-squares method was used to search for
a growth curve that best fitted the experimental data, the errors would be evenly
distributed around the experimental data points. Therefore, the higher the R?
value, the more closely the differential equations found by the numerical
algorithm matched the experimental data. The pseudo-R? value may not be a
perfect indicator for the degree of fitness for the computer-generated growth
curves, however, it was used in this study for comparative purposes.

SES

)E c'-6f

=1

R*=1-

Secondary Kinetic Model .

To evaluate the temperature dependence of the population growth of C.
perfringens in cooked beef, k;, was correlated to temperature using a modified
Ratkowsky equation (Zwietering et al. 1991):

k(D = AT-T ) {1-exp[B(T-T_))}- ®

In Eq. (8), both A and B are coefficients, T, and T, are the theoretical
minimum and maximum growth temperatures for C. perfringens in cooked
ground beef. A Windows-based statistical package NCSS 2000 (Hintze 1999)
was used to obtain the parameters of the equation using nonlinear regression.
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Estimation of Bacterial Growth Under Dynamic Temperatures

After Eq. (8) was available, the differential growth equations (Eq. (1)-(2))
were used to estimate the bacterial population growth under dynamic tempera-
ture conditions described previously. Again, the 4th-order Runge-Kutta method
was used to simmitaneously solve these equations. The temperature-dependent k,,
values were incorporated to the computer program to calculate the bacterial

growth under dynamic temperature conditions.

RESULTS AND DISCUSSION

Selection of o

In this research, it is assumed that there is linear relationship between k;,
and k, (Eq. 5), and o represents the interdependency between the two
parameters. For a given set of experimental growth data, both k;, and k;, are
unknown and must be determined by numerical analysis. Mathematically, there
may be numerous combinations of & and k;, values during numerical iterations
to search for the best combination. With ecach selection of a « value, a
corresponding kg, could be found, and consequeatly a growth curve could be
generated by the computer program. Figure 1 illustrates the effect of o on the
result of numerical analysis for a set of experimental growth data.

Obviously lag phase and k;, were both significantly affected by o. As &
increased from 0.0001 to 1, the lag phase of the computer-generated growth
curve gradually decreased. At a = 1, the computer-generated growth curve
shows a very small lag phase, indicating that such a curve can be used to fit the
growth data without lag phases. Generally, the k;, values found by the computer
program generally decreased with a. However, it became independent of o
when o was between 0.1 and 0.01 (Fig. 2). For C. perfringens in cooked
ground beef, a ¢ value of 0.01 was found suitable for fitting the majority of the
experimental isothermal growth curves. Therefore this value was chosen in the
computer program to search the best suitable ki, values for all experimental
growth curves.

Isothermal Growth Curve Fitting

With a set to 0.01, all the experimental growth data were successfully
analyzed to obtain the differential equations describing the growth behavior of
C. perfringens in cooked ground beef. Numerical analysis showed the
differential equations accurately matched the experimental data. The pseudo-R?
values ranged between 0.963-0.999, indicating a close agreement between the
computer-generated growth curves and the experimental data. As demonstrated
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in Fig. 3, all of the three phases of microbial growth — lag, exponential, and
stationary, are accurately described by the matching differential equations. A
log-linear relationship between the cell concentration and incubation time can be
clearly observed in the exponential phase, indicting that the differential equations
can be used to depict the exponential growth nature of microbial division and
multiplication.

Secondary Growth Model

The slopes of the linear portions of growth curves, or k;,, were correlated
to temperatures using a modified Ratkowsky equation (Fig. 4). The minimum
and maximum growth temperatures estimated from the Ratkowsky model were
9.11 and 51.21C (Table 1). These values were in a close agreement with the
values reported in the literature (Huang 2002; Juncja e al. 1999).

Lag Phase

The growth curves fitted to experiment data show a general trend of the lag
phase. However, the lag phase is not explicitly defined in the differential
equations. Two methods can be used to define the lag phases of the growth
curves. Buchanan and Solberg (1972) proposed an empirical method to
determine the lag phase of an isothermal growth curve. They defined the lag
phase (Ag) as the time for the initial population to increase twofold. In the study
reported by Juneja and Marks (2002), the lag phase (\;) of an isothermal growth
curve was derived from the differential growth equations and is expressed in Eq.
(9). In the current study, ky/k; was 100 in Eq. (9). Therefore, the lag phase is
inversely related to the rate constant, ky,. It was discovered that the lag phases
determined from the empirical method (Buchanan and Solberg 1972) were
almost identical to those determined from the formmula method (Juneja and Marks
2002) (Fig. 5). The correlation coefficient between the two methods was 0.976,
very close to 1. This is a clear indication that the definition of the lag phase by
these two methods agreed very well.

k, |
1= - ©)
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Bacterial Growth Under Fluctuating Temperatures

With k;, as a function of temperature (Eq. 8), the bacterial growth under
fluctuating temperature conditions was estimated by simultaneously solving Eq.
2-4 using the 4th-order Runge-Kutta method. Figure 6A shows the result of the
dynamic estimation of the growth of C. perfringens in cooked beef with
incubation temperatures periodically fluctuating between 30-45C. Figure 6B
represeats the simulation result of the bacterial growth under temperatures
fluctuating between 45-36C. For both simulation curves, the initial and
maximum cell coscentrations used in the numerical analysis were 2.0 and 8.31
log (CFU/g), respectively. The simulation result matched the experimental data
closely, except at the early period (< 2 h) of the incubation process. Overall,
the estimation errors were less than 0.5 log (CFU/g). There is an explanation
for the discrepancy between the observed and computer-estimated growth data
for C. perfringens during the early stage of incubation. For some reason, the
population of this organism, both in spore and vegetative cell forms, usually
expetiences an initial decline when incubated. The degree of the initial decline
in population is more severe at higher temperatures, This observation is called
the “Phoenix phenomenon®, explained in detail in a study reported by
Shoemaker and Pierson (1976). This phenomenon usually occurs in the lag
phase. The initial decline in the cell population does not mean that the organisms
will eventually “die out”. Instead, this organism starts to multiply rapidly after
the lag phase. The differential equations developed in this study could not
describe the “Phoenix phenomenon”. The differential equations, however, can
be used to estimate the potential bacterial growth as if the “Phoenix phenome-
non” is pot in effect. The resuits obtained from the differential equations
Tepreseats a more conservative estimation of bacterial growth for C. perfringens
in cooked beef during the carly stage of incubation.

Bacterial Growth Under Exponential and Linear Cooling Temperature
Profiles

In conjunction with the secondary kinetic model with k;, as a function of
temperature (Table 1), the differential growth equations also can be used to
estimate the bacterial growth under continuously changing temperature
conditions. For C. perfringens, however, the vegetative calls may have to
constantly adjust their metabolism to adapt to the environmental conditions
during the initial stage of incubation. This would result in an increased lag time
during the first few hours of incubation. Mathematically, the increased lag phase
can be attributed to 2 reduced k, in Eq. (1), which controls the rate at which the
inoculated cells leave the lag state or enter the state of active division and
multiplication. Under dynamic conditions, the best choice of k, was experimen-
tally determined as 0.0004k;,. Figure 7 shows the results of the computer
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estimation of bacterial growth processes during exponential and linear cooling.
Except at the carly stage of incubation (t < 3 h), the differences between the
estimated and actual growth data were generally less than 0.5 log (CFU/g),
indicating that the differential growth equations and the numerical method can
be used to estimate bacterial growth under dynamic conditions. The discrepancy
between the experimental and computer-estimated data in the carly stage of
dynamic growth also can be attributable to the “Phoenix phenomenon”
mentioned previously.

8 50
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FIG. 6. DYNAMIC ESTIMATION OF THE GROWTH OF C. PERFRINGENS UNDER
FLUCTUATING TEMPERATURE CONDITIONS
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TABLE 1.
PARAMETERS OF THE MODIFIED RATKOWSKY EQUATION FOR k;* SHOWN

INFIG. 4

Parameter Estimated Value Asymptotic Sandard Error

A 3.187 x 10 3.98 x 104

B 0.5446 0.1711

T CC} 9.1 1.60

T ("C) 5121 0.33

*ky = A(T-T)* (1-exp{B(T-T,_)D

o8 .

log(CFW/g)

-
- N

t(h)

FIG. 7. DYNAMIC ESTIMATION OF THE GROWTH OF C. PERFRINGENS
UNDER EXPONENTIAL AND LINEAR COOLING TEMPERATURE PROFILES
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The numerical method used in this study to estimate the bacterial growth
under dynamic conditions is similar in principle to the method developed by Van
Impe ez al. (1992, 1995), where the differential form of the Gompertz was used.
The accuracy of the current method was also similar to the results obtained from
the differential Gompertz equation (Huang 2003). Although both methods can
be used to accurately estimate the dynamic bacterial growth, there is a difference
between the two methods. The differential Gompertz equation was derived from
the traditional modified Gompertz model, and therefore the method proposed by
Van Impe et al. (1992, 1995) is essentially based on an empirical model. Both
methods could accurately describe the bacterial growth under dynamic
temperature conditions. The method developed in this study was not compared
with the Baranyi's dynamic approach, however, due to the author’s lack of
understanding of its methodology.

CONCLUSIONS

This study successfully validated the differential growth models proposed
by Juneja ez al. (2001) and Juncja and Marks (2002) using a numeric method in
a computer simulation program. It was confirmed that the biologically-based
differential equations were capable of depicting the entire isothermal growth
curves, including the lag, exponcntial, and stationary phases. The results of
numerical analysis of differential growth equations closely matched the
experimental growth data for C. perfringens in cooked ground beef under
isothermal conditions bétween 17-50C.

The differential equations also could be used to estimate the bacterial
growth under dynamic temperature conditions. The secondary kinetic model,
describing the temperature dependence of growth rates, can be used in
conjunction with the differential equations to calculate the bacterial growth under
dynamic conditions. Numerical analysis results of four temperature profiles
matched closely with the experimental observations. Since the bacterial growth
kinetics was integrated into the numerical algorithm, this computer program can
be used to estimate and predict the growth of C. perfringens in cooked beef
under any temperature conditions. Potentially it can be used to as a tool for real-
time estimation and prediction of bacterial growth under temperature abuse and
deviation conditions frequently encountered in the food industry and foodservice
settings. :
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